304 research outputs found

    New observations with the gamma ray imager SIGMA

    Get PDF
    Results from the use of the gamma ray telescope SIGMA are given. An identification and an extensive study was done of sources contributing to the emission of the Galactic center region above 30 keV. A strong line was observed at 480 keV from Nova Muscae, which may be interpreted as an annihilation line with a redshift due to the presence of a compact object. The soft x-ray tails observed by SIGMA in some transient sources already identified as soft x-ray transients might be a common characteristic of these objects and has to be explained. The unusual spectrum of NGC4151 with a break around 50 keV can characterize a particular state of this kind of object. If it is the case, it has interesting implications for the origin of the Cosmic Diffuse Background

    The Pulse Scale Conjecture and the Case of BATSE Trigger 2193

    Get PDF
    The pulses that compose gamma-ray bursts (GRBs) are hypothesized to have the same shape at all energies, differing only by scale factors in time and amplitude. This "Pulse Scale Conjecture" is confirmed here between energy channels of the dominant pulse in GRB 930214c (BATSE trigger 2193), the single most fluent single-pulsed GRB that occurred before May 1998. Furthermore, pulses are hypothesized to start at the same time independent of energy. This "Pulse Start Conjecture" is also confirmed in GRB 930214c. Analysis of GRB 930214c also shows that, in general, higher energy channels show shorter temporal scale factors. Over the energy range 100 KeV - 1 MeV, it is found that the temporal scale factors between a pulse measured at different energies are related to that energy by a power law, possibly indicating a simple relativistic mechanism is at work. To test robustness, the Pulse Start and Pulse Scale Conjectures were also tested on the four next most fluent single-pulse GRBs. Three of the four clearly passed, with a second smaller pulse possibly confounding the discrepant test. Models where the pulse rise and decay are created by different phenomena do not typically predict pulses that satisfy both the Pulse Start Conjecture and the Pulse Scale Conjecture, unless both processes are seen to undergo common time dilation.Comment: 19 pages, 9 figures, analysis revised and extended, accepted to Ap

    Persistent time intervals between features in solar flare hard X-ray emission

    Get PDF
    Several solar hard X-ray events (greater than 100 keV) were observed simultaneously with identical instruments on the Venera 11, 12, 13, 14, and Prognoz spacecraft. High time resolution (= 2 ms) data were stored in memory when a trigger occurred. The observations of modulation are presented with a period of 1.6 s for the event on December 3, 1978. Evidence is also presented for fast time fluctuations from an event on November 6, 1979, observed from Venera 12 and another on September 6, 1981, observed from the Solar Maximum Mission. Power spectrum analysis, epoch folding, and Monte Carlo simulation were used to evaluate the statistical significance of persistent time delays between features. The results are discussed in light of the MHD model proposed by Zaitsev and Stepanov

    An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    Get PDF
    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range

    Detection of a fast, intense and unusual gamma ray transient

    Get PDF
    An unusual transient pulse of approximately 50 keV was detected by the gamma-ray burst sensor network using nine space probes and satellites. Its characteristics are unlike those of the known variety of gamma-ray bursts and therefore suggest that it was formed either by a completely different origin species or in a very different manner. It is identified with the LMC supernova remnant N49

    The all-sky distribution of 511 keV electron-positron annihilation emission

    Full text link
    We present a map of 511 keV electron-positron annihilation emission, based on data accumulated with the SPI spectrometer aboard ESA's INTEGRAL gamma-ray observatory, that covers approximately 95% of the celestial sphere. 511 keV line emission is significantly detected towards the galactic bulge region and, at a very low level, from the galactic disk. The bulge emission is highly symmetric and is centred on the galactic centre with an extension of 8 deg. The emission is equally well described by models that represent the stellar bulge or halo populations. The disk morphology is only weakly constrained by the present data, being compatible with both the distribution of young and old stellar populations. The 511 keV line flux from the bulge and disk components is 1.05e-3 ph cm-2 s-1 and 0.7e-3 ph cm-2 s-1, respectively, corresponding to a bulge-to-disk flux ratio in the range 1-3. Assuming a positronium fraction of 0.93 this translates into annihilation rates of 1.5e43 s-1 and 3e42 s-1, respectively. The ratio of the bulge luminosity to that of the disk is in the range 3-9. We find no evidence for a point-like source in addition to the diffuse emission, down to a typical flux limit of 1e-4 ph cm-2 s-1. We also find no evidence for the positive latitude enhancement that has been reported from OSSE measurements; our 3 sigma upper flux limit for this feature is 1.5e-4 ph cm-2 s-1. The disk emission can be attributed to the beta+ decay of the radioactive species 26Al and 44Ti. The bulge emission arises from a different source which has only a weak or no disk component. We suggest that Type Ia supernovae and/or low-mass X-ray binaries are the prime candidates for the source of the galactic bulge positrons. Light dark matter annihilation could also explain the observed 511 keV bulge emission characteristics.Comment: accepted for publication in A&

    Early SPI/INTEGRAL contraints on the morphology of the 511 keV line emission in the 4th galactic quadrant

    Full text link
    We provide first constraints on the morphology of the 511 keV line emission from the galactic centre region on basis of data taken with the spectrometer SPI on the INTEGRAL gamma-ray observatory. The data suggest an azimuthally symmetric galactic bulge component with FWHM of ~9 deg with a 2 sigma uncertainty range covering 6-18 deg. The 511 keV line flux in the bulge component amounts to (9.9+4.7-2.1) 10e-4 ph cm-2 s-1. No evidence for a galactic disk component has been found so far; upper 2 sigma flux limits in the range (1.4-3.4) 10e-3 ph cm-2 s-1 have been obtained that depend on the assumed disk morphology. These limits correspond to lower limits on the bulge-to-disk ratio of 0.3-0.6.Comment: 5 pages, 3 figures, accepted for publication in A&

    A second catalog of gamma ray bursts: 1978 - 1980 localizations from the interplanetary network

    Get PDF
    Eighty-two gamma ray bursts were detected between 1978 September 14 and 1980 February 13 by the experiments of the interplanetary network (Prognoz 7, Venera 11 and 12 SIGNE experiments, Pioneer Venus Orbiter, International Sun-Earth Explorer 3, Helios 2, and Vela). Sixty-five of these events have been localized to annuli or error boxes by the method of arrival time analysis. The distribution of sources is consistent with isotropy, and there is no statistically convincing evidence for the detection of more than one burst from any source position. The localizations are compared with those of two previous catalogs
    corecore